# **VMware Security Briefing**

Matt Northam

Systems Engineer – Security Specialist

Northern EMEA



# **VMware Security Strategy**

|                                                                                                                                                                                                                                  |                                                                                                                            | Virtual<br>Appliance                                                                                                                 | .OVF                                                                                                                                                                                                                |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Core Platform<br>Security                                                                                                                                                                                                        | Operationalize<br>Security                                                                                                 | Security Virtual<br>Appliances                                                                                                       | Better Than<br>Physical                                                                                                                                                                                             |
| <ul> <li>New platform<br/>hardening<br/>features further<br/>enhance robust<br/>security<br/>capabilities</li> <li>Thin-hypervisor<br/>strategy</li> <li>Memory<br/>Protection</li> <li>Kernel Module<br/>Protections</li> </ul> | <ul> <li>Integrate<br/>VMware<br/>products into<br/>existing<br/>operational<br/>policies in the<br/>enterprise</li> </ul> | <ul> <li>Enable broad-<br/>based security<br/>for every VM in<br/>the<br/>environment</li> <li>"Democratize"<br/>security</li> </ul> | <ul> <li>Self-describing,<br/>Self-configuring<br/>security</li> <li>Impact security<br/>by taking<br/>advantage of<br/>unique VMware<br/>technologies</li> <li>Focus on<br/>products and<br/>operations</li> </ul> |

## **Secure Implementation**



# VMware ESXi

- Compact 100MB footprint
  - Fewer patches
  - Smaller attack surface
- Absence of generalpurpose management OS
  - No arbitrary code running on server
  - Not susceptible to common threats



# **ESXi Security Model**





## **Isolation by Design**







#### **CPU & Memory**

- VMs have limited access to CPU
- Memory isolation enforced by Hardware TLB
- Memory pages zeroed out before being used by a VM

#### **Virtual Network**

- No code exists to link virtual switches
- Virtual switches immune to learning and bridging attacks

#### **Virtual Storage**

- Virtual Machines only see virtual SCSI devices, not actual storage
- Exclusive virtual machine access to virtual disks enforced by VMFS using SCSI file locks

Security Design of the VMware Infrastructure 3 Architecture http://www.vmware.com/resources/techresources/727

#### **vm**ware<sup>®</sup>

#### **Platform Hardening**

- Integrity in Memory Protection
  - NX/XD Marks writable areas of memory as non-executable
  - ASLR Randomizes where core kernel modules load into memory
- Kernel Module Integrity
  - Digital signing ensures the integrity and authenticity of modules, drivers and applications as they are loaded by the VMkernel.
  - Module signing allows ESX to identify the providers of modules, drivers, or applications and whether they are VMware-certified.



## **VMware Secure Development Lifecycle Process**



VMworld 2009 Session TA2543: VMware's Secure Software Development Lifecycle

![](_page_6_Picture_3.jpeg)

# **Independently validated**

- Common Criteria Certification EAL (Evaluation Assurance Level)
  - CC EAL 4+ certification
    - Highest recognized level
    - Achieved for ESX 3.0; in process for ESX 3.5
    - Current Submission for vSphere
- DISA STIG for ESX
  - Approval for use in DoD information systems
- NSA Central Security Service
  - guidance for both datacenter and desktop scenarios

![](_page_7_Picture_10.jpeg)

![](_page_7_Picture_11.jpeg)

![](_page_7_Picture_12.jpeg)

![](_page_7_Picture_13.jpeg)

## **How Virtualization Affects Datacenter Security**

![](_page_8_Figure_1.jpeg)

**Biggest Security Risk: Misconfiguration** 

Neil MacDonald – "How To Securely Implement Virtualization"

![](_page_9_Picture_2.jpeg)

"Like their physical counterparts, most security vulnerabilities will be introduced through misconfiguration and mismanagement"

![](_page_9_Picture_4.jpeg)

#### Hypervisor Rootkits

- Examples: Blue Pill, SubVirt, etc.
- These are ALL theoretical, highly complex attacks
- Widely recognized by security community as being only of academic interest

#### Irrelevant Architectures

- Example: numerous reports claiming guest escape
- Apply only to hosted architecture (e.g. Workstation), not bare-metal (i.e. ESX)
- Hosted architecture deliberately include numerous channels for exchanging information between guest and host.

#### **Contrived Scenarios**

- Example: VMotion intercept
- Involved exploits where
  - Best practices around hardening, lockdown, design, for virtualization etc, not followed, or
  - Poor general IT infrastructure security is assumed

- Allows Automation of Many Manual Error Prone Processes
- Cleaner and Easier Disaster Recovery/Business Continuity
- Better Forensics Capabilities
- Faster Recovery After an Attack
- Patching is Safer and More Effective
- Better Control Over Desktop Resources
- More Cost Effective Security Devices
- App Virtualization Allows de-privileging of end users
- Better Lifecycle Controls
- Security Through VM Introspection

![](_page_12_Picture_0.jpeg)

# KEYS TO A SECURE VIRTUALIZED DEPLOYMENT

Security of VMware Infrastructure

# **Use the Principles of Information Security**

- Hardening and Lockdown
- Defense in Depth
- Authorization, Authentication, and Accounting
- Separation of Duties and Least Privileges
- Administrative Controls

# For virtualization this means:

- Secure the Guests
- Harden the Virtualization layer
- Setup Access Controls
- Leverage Virtualization Specific Administrative Controls

![](_page_13_Picture_12.jpeg)

#### Security solutions are facing a growing problem

- Protection engines do not get complete visibility in and below the OS
- Protection engines are running in the same context as the malware they are protecting against
- Even those that are in a safe context, can't see other contexts (e.g. network protection has no host visibility).

#### Virtualization can provide the needed visibility

- Better Context Provide protection from outside the OS, from a trusted context
- New Capabilities view all interactions and contexts
  - CPU
  - Memory
  - Network
  - Storage

![](_page_14_Picture_12.jpeg)

![](_page_15_Figure_1.jpeg)

- New security solutions can be developed and integrated into VMware virtual infrastructure
- Protect the VM by inspection of virtual components (CPU, Memory, Network and Storage)
- Complete integration and awareness of VMotion, Storage VMotion, HA, etc.
- Provides an unprecedented level of security for the application and the data inside the VM

# VMsafe<sup>™</sup> APIs

### API's for all virtual hardware components of the VM

- CPU/Memory Inspections
  - Inspection of specific memory pages being used by the VM or it applications
  - Knowledge of the CPU state
  - Policy enforcement through resource allocation of CPU and memory pages
- Networking

![](_page_16_Picture_7.jpeg)

- View all IO traffic on the host
- Ability to intercept, view, modify and replicate IO traffic from any one VM or all VM's on a single host.
- Capability to provide inline or passive protection

![](_page_16_Picture_11.jpeg)

#### Storage

Ability to mount and read virtual disks

![](_page_16_Picture_14.jpeg)

# **VMware Security Strategy**

|                                                                                                                                                                                                                                  |                                                                                                                            | Virtual<br>Appliance                                                                                                                 | .OVF                                                                                                                                                                                                                |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Core Platform<br>Security                                                                                                                                                                                                        | Operationalize<br>Security                                                                                                 | Security Virtual<br>Appliances                                                                                                       | Better Than<br>Physical                                                                                                                                                                                             |
| <ul> <li>New platform<br/>hardening<br/>features further<br/>enhance robust<br/>security<br/>capabilities</li> <li>Thin-hypervisor<br/>strategy</li> <li>Memory<br/>Protection</li> <li>Kernel Module<br/>Protections</li> </ul> | <ul> <li>Integrate<br/>VMware<br/>products into<br/>existing<br/>operational<br/>policies in the<br/>enterprise</li> </ul> | <ul> <li>Enable broad-<br/>based security<br/>for every VM in<br/>the<br/>environment</li> <li>"Democratize"<br/>security</li> </ul> | <ul> <li>Self-describing,<br/>Self-configuring<br/>security</li> <li>Impact security<br/>by taking<br/>advantage of<br/>unique VMware<br/>technologies</li> <li>Focus on<br/>products and<br/>operations</li> </ul> |