

HERVÉ SCHAUER CONSULTANTS

Cabinet de Consultants en Sécurité Informatique depuis 1989 Spécialisé sur Unix, Windows, TCP/IP et Internet

Introduction sur les risques avec l'informatique « industrielle »

Sécurité du Cloud & Attaques Scada :

Paris, 23 novembre 2010 Hervé Schauer

<Herve.Schauer@hsc.fr>

Sommaire

- Introduction
- Services concernés
- Vulnérabilités
 - IP
 - Infrastructure
 - Serveurs
 - IT
- Solutions
- Conclusion
- Ressources

Introduction

- Migration vers le tout IP
 - Téléphonie classique → Téléphonie sur IP
 - Machines industrielles → IP
 - Avions, trains, voitures → IP
 - Services généraux → IP
 - Migration complète ou partielle
 - Transport & équipements terminaux
 - Supervision, commande, télémaintenance
- Parfois difficile de sensibiliser les responsables concernés
 - Merci conficker & stuxnet

Services concernés

Sécurité physique

- Portes, badgeuses, caméras, détecteurs de présence, détecteurs incendie, détecteurs de fumée, hydromètres, thermomètres, etc
- Services généraux
 - Ventilation, climatisation, chauffage, éléments de confort (volets), etc
 - Energie : onduleurs, groupes électrogènes, etc
 - Ascenseurs
- Pilotage de systèmes industriels
 - Souvent regroupé sous le terme SCADA (Supervisory Control And Data Acquisition): machines-outils, appareils biomédicaux, etc
- Services grand public
 - Surveillance du domicile, objets intelligents, véhicules (voitures, camions, avions, etc)

Risques

- Changement radical de l'exposition aux risques :
 - Tout interconnecté, tout sur internet
 - Changements d'échelle des accès aux éléments sensibles
 - Exemple : centrale d'alarme connectée en IP accessible depuis une filiale étrangère
 - Technologie plus facile à acquérir par les attaquants
 - Alors que les systèmes sont plus complexes
- Risque physique et risque sur la vie des individus à partir d'un risque informatique
 - Intrusion physique par le système de contrôle d'accès
 - Déni de service sur les alarmes ou les détecteurs incendie, ...
 - Atteinte à la vie privée, chantage, ...
 - Appareils médicaux dont dépend la vie du patient
 - Véhicules

Vulnérabilités liées à IP

- Légèreté des appareils
 - Peu de mémoire, peu de CPU
 - Systèmes d'exploitation moins évolués et peu éprouvés
 - ➡ Risque élevé d'intrusion ou de déni de service via le réseau (inondation, etc)
- Protocoles de communication « portés » et peu résistants
 - Déni de service, boucles, redémarrage, ...
 - Usurpations, interceptions, rejeu, ...
- Exemples :
 - Defcon 17 : Déni de service sur la vraie caméra, puis injection de flux vidéo (« Ocean's Eleven Attack »)
 - HSC 2009 : plantage capteur à distance à travers la box, puis génération de fausses alarmes ...

Vulnérabilités de l'infrastructure

- Coupure ou perturbations du réseau Ethernet
- Brouillage Wifi & réseaux sans fil
- Coupure du Power On Ethernet ou de l'alimentation
- Perte de l'infrastructure IP
 - DHCP, DNS, routage, commutateurs, routeurs, etc
- Attaques par épuisement de ressources
 - Batteries
- Télémaintenance et rebonds IP
 - Exemple : équipement connecté au GPRS pour la supervision externe et au réseau de l'entreprise

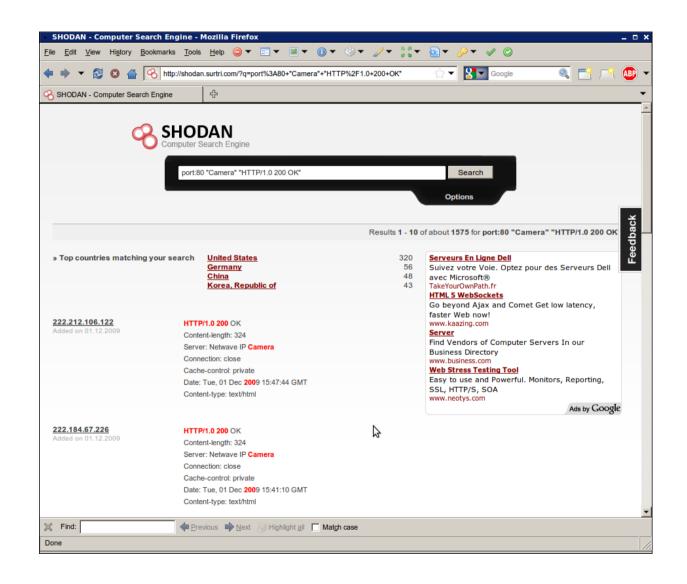
Vulnérabilités des serveurs

- Serveurs (PC) livrés par un intégrateur qui échappent aux équipes IT : « Vous touchez à rien sinon ça ne marche plus ! »
- La sécurité est « abandonnée » :
 - Pas de suivi des correctifs Windows, Oracle, etc
 - Mots de passe (système, bases de données)
 - Jamais changés, partagés
 - Nombreuses vulnérabilités des interfaces d'administration
 - Programmation par des stagiaires sur un coin de table
 - Directement en production
 - Oubli de mise en oeuvre des sauvegardes
 - Accès distants intégrateur ...

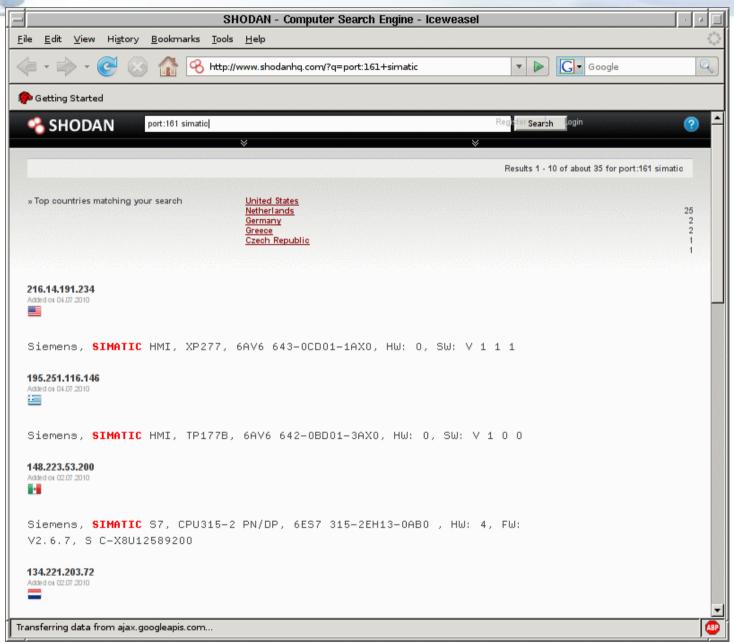
Vulnérabilités de l'IT

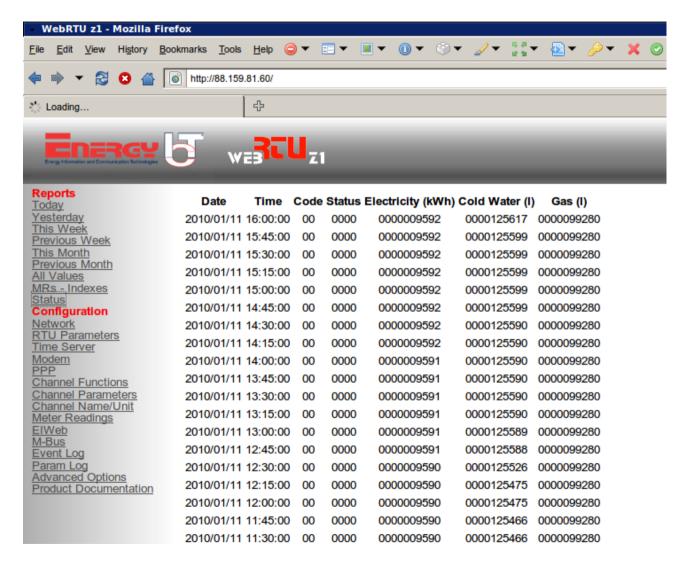
- PC : coût négligeable par rapport à l'appareil géré
 - Serveur parfois offert par le fournisseur de l'appareil
- Oubli du contrôle des ports USB
 - Conficker est généralement arrivé sur les SI industriels par clé USB
- Prise de contrôle à distance par l'assistance aux utilisateurs (helpdesk) du serveur
- Remplacement des serveurs dédiés par des machines virtuelles dans les nuages (cloud)
- SAP connecté directement sur les serveurs des appareils industriels
 - Et au réseau informatique, à Internet et à Walldorf

Exemples


- Gestion des pointeuses avec SQL Server sans mot de passe
- Serveur de gestion des écoutes d'un centre d'appel ...
- Automates bancaires (en Afrique) ...

•


Exemple: caméras sur internet


Exemple: Siemens Simatic

Exemple: RTU sur internet

Exemple?

Stuxnet

- Déni de service sur un système de contrôle industriel, mais le vol de données aurait pu être possible
- Attaque ciblée sur certains automates Siemens Simatic et sur un processus particulier
- Utilisation de plusieurs 0-days Windows, pilote signé
- Mot de passe par défaut Siemens pour l'accès à MS-SQL
- Modification de la fréquence des moteurs des centrales
- A priori ans le but de détruire les centifugeuses de gaz qui produisent de l'uranium enrichi dans les centrales iraniennes
- Vibrations ainsi provoquées pourraient détruire le rotor de la centrifugeuse

Solutions

- Comprendre soit-même les technologies utilisées
 - Comprendre les flux de données
 - Comprendre les interfaces
- Se faire expliquer par les fournisseurs
 - Préférer ce qui est normé et ouvert
- Intégrer l'informatique industrielle et l'informatique des services généraux à la DSI
 - Tout en intégrant les éventuels spécialistes du domaine
 - Comme pour la ToIP
 - Appliquer les procédures d'une DSI :
 - Intégration, supervision, masters, sauvegardes, PCA, etc.
 - En respectant les contraintes de l'équipement et de l'utilisateur

Solutions

- Déployer la PSSI à ces équipements
 - Appliquer ses mesures de sécurité en matière de mots de passe, correctifs de sécurité, mise à jour d'anti-virus, bonnes pratiques, ...
 - Intégrer la SSI dans les contrats
 - Imposer des règles d'accès par des tiers
 - Former les informaticiens à l'informatique industrielle les spécialistes des appareils à l'informatique
 - Cloisonner par une segmentation réseau
 - Pas toujours possible : certains protocoles propriétaires utilisant tous les ports
 - Procéder à des audits de sécurité et des tests d'intrusions
 - Si possible avant la mise en production

Conclusion

- Achat d'informatique → implication de la DSI et du RSSI
 - Intégration d'exigences de maintenance et de sécurité
- Matériel connecté au réseau → engagement contractuel
 - Acceptation d'intégration à la DSI, de l'auditabilité, etc
- Cloisonnement au niveau réseau

Questions?

Herve.Schauer@hsc.fr www.hsc.fr

Ressources

- Présentation d'Alain Thivillon au panorama de la Cybercriminalité : http://www.hsc.fr/ressources/presentations/panocrim_athivillon_toutip/
- Shodan (Computer Search Engine): http://shodan.surtri.com/
- Hacking Hospital: http://pcworld.about.com/od/securit1/Security-Guard-Charged-With-Ha.htm
- Defcon 17: Video Hacking: http://www.theregister.co.uk/2009/08/01/video_feed_hacking/, http://hackerpoetry.com/images/defcon-17/dc-17-presentations/defcon-
- RISKS Digest: http://catless.ncl.ac.uk/Risks

